A One-Phase Space-Fractional Stefan Problem With No Liquid Initial Domain
نویسندگان
چکیده
Taking into account the recent works \cite{RoTaVe:2020} and \cite{Rys:2020}, we consider a phase-change problem for one dimensional material with non-local flux, expressed in terms of Caputo derivative, which derives space-fractional Stefan problem. We prove existence unique solution to fractional Neumann boundary condition at fixed face $x=0$, where domain, initial time, consists liquid solid. Then use this result limit an analogous solid when it is not possible transform domain cylinder.
منابع مشابه
A study of a Stefan problem governed with space–time fractional derivatives
This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...
متن کاملNonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملa study of a stefan problem governed with space–time fractional derivatives
in this paper, we present a fractional mathematical model of a one-dimensional phase phase change problem (stefan problem) with latent heat a power function of position. this model includes space-time fractional derivatives in caputo sense and time dependent surface heat flux. an approximate solution of this model is obtained by optimal homotopy asymptotic method (oham) to find an approximate s...
متن کاملA nonlocal one-phase Stefan problem that develops mushy regions
We study a nonlocal version of the one-phase Stefan problem which develops mushy regions, even if they were not present initially, a model which can be of interest at the mesoscopic scale. The equation involves a convolution with a compactly supported kernel. The created mushy regions have the size of the support of this kernel. If the kernel is suitably rescaled, such regions disappear and the...
متن کاملOn a One-Phase Stefan Problem in Nonlinear Conduction
One and two phase Stefan problems for the linear heat equation have been the subject of many studies in the past [1, 2]. Indeed these problems have a great physical relevance since they provide a mathematical model for the processes of phase changes [3, 4]. The boundary between the two phases is a free boundary: its motion has to be determined as part of the solution. More recently the previous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Mathematical Analysis
سال: 2022
ISSN: ['0036-1410', '1095-7154']
DOI: https://doi.org/10.1137/21m1461599